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List of Elements with Their Symbols and Atomic Masses
Element Symbol Atomic Number Atomic Mass
Actinium Ac 89 227.03a

Aluminum Al 13 26.98
Americium Am 95 243.06a

Antimony Sb 51 121.76
Argon Ar 18 39.95
Arsenic As 33 74.92
Astatine At 85 209.99a

Barium Ba 56 137.33
Berkelium Bk 97 247.07a

Beryllium Be 4 9.012
Bismuth Bi 83 208.98
Bohrium Bh 107 264.12a

Boron B 5 10.81
Bromine Br 35 79.90
Cadmium Cd 48 112.41
Calcium Ca 20 40.08
Californium Cf 98 251.08a

Carbon C 6 12.01
Cerium Ce 58 140.12
Cesium Cs 55 132.91
Chlorine Cl 17 35.45
Chromium Cr 24 52.00
Cobalt Co 27 58.93
Copernicium Cn 112 285a

Copper Cu 29 63.55
Curium Cm 96 247.07a

Darmstadtium Ds 110 271a

Dubnium Db 105 262.11a

Dysprosium Dy 66 162.50
Einsteinium Es 99 252.08a

Erbium Er 68 167.26
Europium Eu 63 151.96
Fermium Fm 100 257.10a

Flerovium Fl 114 289a

Fluorine F 9 19.00
Francium Fr 87 223.02a

Gadolinium Gd 64 157.25
Gallium Ga 31 69.72
Germanium Ge 32 72.63
Gold Au 79 196.97
Hafnium Hf 72 178.49
Hassium Hs 108 269.13a

Helium He 2 4.003
Holmium Ho 67 164.93
Hydrogen H 1 1.008
Indium In 49 114.82
Iodine I 53 126.90
Iridium Ir 77 192.22
Iron Fe 26 55.85
Krypton Kr 36 83.80
Lanthanum La 57 138.91
Lawrencium Lr 103 262.11a

Lead Pb 82 207.2
Lithium Li 3 6.94
Livermorium Lv 116 292a

Lutetium Lu 71 174.97
Magnesium Mg 12 24.31
Manganese Mn 25 54.94
Meitnerium Mt 109 268.14a

Element Symbol Atomic Number Atomic Mass
Mendelevium Md 101 258.10a

Mercury Hg 80 200.59
Molybdenum Mo 42 95.95
Moscovium Mc 115 289a

Neodymium Nd 60 144.24
Neon Ne 10 20.18
Neptunium Np 93 237.05a

Nickel Ni 28 58.69
Nihonium Nh 113 284a

Niobium Nb 41 92.91
Nitrogen N 7 14.01
Nobelium No 102 259.10a

Oganesson Og 118 294a

Osmium Os 76 190.23
Oxygen O 8 16.00
Palladium Pd 46 106.42
Phosphorus P 15 30.97
Platinum Pt 78 195.08
Plutonium Pu 94 244.06a

Polonium Po 84 208.98a

Potassium K 19 39.10
Praseodymium Pr 59 140.91
Promethium Pm 61 145a

Protactinium Pa 91 231.04
Radium Ra 88 226.03a

Radon Rn 86 222.02a

Rhenium Re 75 186.21
Rhodium Rh 45 102.91
Roentgenium Rg 111 272a

Rubidium Rb 37 85.47
Ruthenium Ru 44 101.07
Rutherfordium Rf 104 261.11a

Samarium Sm 62 150.36
Scandium Sc 21 44.96
Seaborgium Sg 106 266.12a

Selenium Se 34 78.97
Silicon Si 14 28.09
Silver Ag 47 107.87
Sodium Na 11 22.99
Strontium Sr 38 87.62
Sulfur S 16 32.06
Tantalum Ta 73 180.95
Technetium Tc 43 98a

Tellurium Te 52 127.60
Tennessine Ts 117 294a

Terbium Tb 65 158.93
Thallium Tl 81 204.38
Thorium Th 90 232.04
Thulium Tm 69 168.93
Tin Sn 50 118.71
Titanium Ti 22 47.87
Tungsten W 74 183.84
Uranium U 92 238.03
Vanadium V 23 50.94
Xenon Xe 54 131.293
Ytterbium Yb 70 173.05
Yttrium Y 39 88.91
Zinc Zn 30 65.38
Zirconium Zr 40 91.22

aMass of longest-lived or most important isotope
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v

The front cover of this book displays the structures of three different 

substances: n-pentane (bottom left), isopentane (middle right), and 

neopentane (middle left). The three substances are isomers—all three 

molecules are composed of exactly the same 17 atoms (5 carbon atoms 

and 12 hydrogen atoms), yet their properties are different. For 

example, neopentane boils at 9.5  C°  (making it a gas at room 

temperature). Isopentane and n-pentane boil at 27.8  C°  and 36.1  C,°  

respectively, making them both liquids at room temperature. Why do 

the same 17 atoms form molecules with different properties? The ways 

the atoms are bonded together—the molecules’ structures—are 

different, and structure determines properties. The relationship between 

the structure of matter at the atomic and molecular scale and the 

properties of matter, which we can see and measure at the macroscopic 

level, is the central theme of this book. As the properties of these three 

isomers demonstrate, differences in structure nearly always result in 

differences in properties.

About the Cover
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Preface

To the Student
In this book, I tell the story of chemistry, a field of science that has not 
only revolutionized how we live (think of drugs designed to cure diseases 
or fertilizers that help feed the world), but also helps us to understand 
virtually everything that happens all around us all the time. The core of 
the story is simple: Matter is composed of particles, and the structure of 
those particles determines the properties of matter. Although these two 
ideas may seem familiar to you as a twenty-first-century student, they 
were not so obvious as recently as 200 years ago. Yet, they are among 
the most powerful ideas in all of science. You need not look any further 
than the advances in biology over the last half-century to see how the 
particulate view of matter drives understanding. In the last 50 years, we 
have learned how all living things derive much of what they are from  
the particles (especially proteins and DNA) that compose them. I invite 
you to join the story as you read this book. Your part in its unfolding is yet 
to be determined, and I wish you the best as you start your journey.

Nivaldo J. Tro
nivatro@gmail.com

To the Professor
First and foremost, thanks to all of you who adopted this book in its previ-
ous editions. You made this book the market-leading atoms-first book. I 
am grateful beyond words. Second, know that I have listened carefully to 
your feedback about previous editions. The changes you see in this edi-
tion are the direct result of your input, as well as my own experience using 
the book in my general chemistry courses. If you are a reviewer or have 
contacted me directly, you will likely see your suggestions reflected in the 
changes I have made. Thank you.

In spite of the changes in this edition, the goal of the text remains the 
same: to tell the story of chemistry in the most compelling way possible. This 
book grew out of the atoms-first movement in General Chemistry. In a 
practical sense, the main thrust of this movement is a reordering of topics 
so that atomic theory and bonding models come much earlier than in the 
traditional approach. A primary rationale for this approach is for students 
to understand the theory and framework behind the chemical “facts” they 
are learning. For example, in the traditional approach students learn early 
that magnesium atoms tend to form ions with a charge of 2 .+  They don’t 
understand why until much later (when they get to quantum theory). In 
contrast, in an atoms-first approach, students learn quantum theory first 
and understand immediately why magnesium atoms form ions with a 
charge of 2 .+  In this way, students see chemistry as a coherent picture and 
not just a jumble of disjointed facts.

From my perspective, the atoms-first approach is better understood—
not in terms of topic order—but in terms of emphasis. Professors who 
teach with an atoms-first approach generally emphasize: (1) the particulate 
nature of matter and (2) the connection between the structure of atoms and 

molecules and their properties (or their function). The result of this empha-
sis is that the topic order is rearranged to make these connections earlier, 
stronger, and more often than the traditional approach. Consequently, I 
chose to name this book Chemistry: Structure and Properties, and have not 
included the phrase atoms-first in the title. From my perspective, the topic 
order grows out of the particulate emphasis, not the other way around.

In addition, by making the relationship between structure and prop-
erties the emphasis of the book, I extend that emphasis beyond just the 
topic order in the first half of the book. For example, in the chapter on 
acids and bases, a more traditional approach puts the relationship between 
the structure of an acid and its acidity toward the end of the chapter, and 
many professors even skip this material. In this book, I cover this relation-
ship early in the chapter, and I emphasize its importance in the continuing 
story of structure and properties. Similarly, in the chapter on free energy 
and thermodynamics, a traditional approach does not emphasize the rela-
tionship between molecular structure and entropy. In this book, however, 
I emphasize this relationship and use it to tell the overall story of entropy 
and its ultimate importance in determining the direction of chemical  
reactions. In the gases chapter, the particulate view inherent in kinetic 
molecular theory comes at the beginning of the chapter, followed by the 
gas laws and the rest of the chapter content. In this way, students can 
understand the gas laws and all that follows in terms of the particulate 
model.

Throughout the course of writing this book, and in conversations 
with many of my colleagues, I have also come to realize that the atoms-
first approach has some unique challenges. For example, how do you 
teach quantum theory and bonding (with topics like bond energies) 
when you have not covered thermochemistry? Or how do you find labo-
ratory activities for the first few weeks if you have not covered chemical 
quantities and stoichiometry? I have sought to develop solutions to these 
challenges in this book. For example, I include a section on energy and 
its units in Chapter E, “Essentials: Units, Measurement, and Problem 
Solving.” This section introduces changes in energy and the concepts of 
exothermicity and endothermicity. These topics are therefore in place 
when you need them to discuss the energies of orbitals and spectros-
copy in Chapter 2, “Periodic Properties of the Elements,” and bond ener-
gies in Chapter 5, “Chemical Bonding I: Drawing Lewis Structures and 
Determining Molecular Shapes.” Similarly, I introduce the mole concept 
in Chapter 1; this placement allows not only for a more even distribution 
of quantitative homework problems, but also for laboratory exercises 
that require use of the mole concept.

In addition, because I strongly support the efforts of my colleagues at 
the Examinations Institute of the American Chemical Society, and because 
I have sat on several committees that write the ACS General Chemistry 
exam, I have ordered the chapters in this book so that they can be used 
with those exams in their present form. The end result is a table of con-
tents that emphasizes structure and properties, while still maintaining the 
overall traditional division of first- and second-semester topics.
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Some of the most exciting changes and additions to this edition are 
in the media associated with the book. To enhance student engagement in 
your chemistry course, I have added approximately 35 new Key Concept 
Videos and 48 new Interactive Worked Examples to the media package, 
which now contains over 240 interactive videos. In addition, I have cre-
ated new digital content called Key Concept Interactives. The following 
section, entitled “What’s New in This Edition,” contains a more detailed 
description of the digital content. In my courses, I employ readings from 
the book and this digital content to implement a before, during, after strat-
egy for my students. My goal is to engage students in active learning before 
class, during class, and after class. Recent research has conclusively dem-
onstrated that students learn better when they are active as opposed to 
passively listening and simply taking in content.

To that end, in addition to a reading assignment from the text, 
I assign a Key Concept Video or a Key Concept Interactive before each 
class session. Reading sections from the text in conjunction with engaging 
with the digital content introduces students to the key concepts for that 
day and gets them ready for class. Since the digital content and the book 
are so closely linked, students get a seamless presentation of the content. 
During class, I expand on the concept and use Learning Catalytics™ in 
MasteringChemistry™ to question my students. Instead of passively 
listening to a lecture, they interact with the concepts through questions 
that I pose. Sometimes I ask my students to answer individually, other 
times in pairs or even groups. This approach has changed my classroom. 
Students engage in the material in new ways. They have to think, process, 
and interact. After class, I give them another assignment, often an 
Interactive Worked Example with a follow-up question. They put their 
new skills to work in solving this assignment. Finally, I assign a weekly 
problem set in which they have to apply all that they have learned to solve 
a variety of end-of-chapter problems.

The results have been fantastic. Instead of just starting to learn the 
material the night before a problem set is due, my students are engaged 
in chemistry before, during, and after class. I have seen evidence of their 
improved learning through increases in their scores on the American 
Chemical Society Standard General Chemistry Exam, which I always 
administer as the final exam for my course.

For those of you who have used my other general chemistry book 
(Chemistry: A Molecular Approach), you will find that this book is a bit 
shorter and more focused and streamlined than that one. I have shortened 
some chapters and completely eliminated three chapters (“Biochemistry,” 
“Chemistry of the Nonmetals,” and “Metals and Metallurgy”). These topics 
are simply not being taught in many general chemistry courses. Chemistry: 
Structures and Properties is a leaner and more efficient book that fits well 
with current trends that emphasize depth over breadth. Nonetheless, the 
main features that have made Chemistry: A Molecular Approach a success 
continue in this book. For example, strong problem-solving pedagogy, 
clear and concise writing, mathematical and chemical rigor, and dynamic 
art are all vital components of this book.

I hope that this book supports you in your vocation of teaching stu-
dents chemistry. I am increasingly convinced of the importance of our 
task. Please feel free to email me with any questions or comments about 
the book.

Nivaldo J. Tro
nivatro@gmail.com
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The book has been extensively revised and contains more small changes than can be detailed 
here. The most significant changes to the book and its supplements are listed below:

What’s New in This Edition?

New Key Concept Interactives
Forty-nine new Key Concept Interactives (KCIs) have been added to the 
eTextbook and are assignable in Mastering Chemistry. Each interactive 
guides a student through a key topic as they navigate through a series 
of interactive screens. As they work through the KCI, they are presented 
with questions that must be answered to progress. Wrong answers result 
in feedback to guide them toward success.

New and Revised End-of-Chapter Problems
130 New End-of-Chapter questions have been added throughout the 
book, and 314 have been revised. Many new End-of-Chapter questions 
involve the interpretation of graphs and data. All new End-of-Chapter 
questions are assignable in Mastering Chemistry.

New Interactive Videos
Thirty-five new Key Concept Videos (KCVs) and 48 new Interactive 
Worked Examples (IWEs) have been added to the media package that 
accompanies the book. All videos are available within the eTextbook and 
are assignable in Mastering Chemistry. The video library now contains over 
240 interactive videos. These tools are designed to help professors engage 
their students in active learning.

New Online Problem Sets
Online problem sets are web-based, online-only problems that are algo-
rithmically randomized. They provide answer-specific feedback and will 
be continually updated and expanded.

New Predict
Asks students to predict the outcome of the topic they are about to read. 
After the student reads the section, Predict confirms whether the student 
predicted correctly or incorrectly and why. Education research has dem-
onstrated that students learn a topic better if they make a prediction about 
the topic before learning it (even if the prediction is wrong).

Diversity, Equity, and Inclusion Review
The entire book has gone through a detailed review to ensure the content 
reflects the rich diversity of our learners and is inclusive of their lived 
experiences.
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Dear Colleague,
In recent years, many chemistry professors, myself among them, have begun 
teaching their General Chemistry courses with an atoms-first approach. On the 
surface, this approach may seem like a mere reordering of topics, so that atomic 
theory and bonding theories come earlier than they do in the traditional approach. 
A rationale for this reordering is that students should understand the theory and 
framework behind the chemical “facts” they are learning. For example, in the 
traditional approach, students learn early that magnesium atoms tend to form ions 
with a charge of 2 .+  However, they don’t understand why until much later (when 
they get to quantum theory). In an atoms-first approach, students learn quantum 
theory first and are therefore able to understand why magnesium atoms form ions 
with a charge of 2+ when they learn this fact. In this way, students see chemistry 
as a more coherent picture and not just a jumble of disjointed facts.

From my perspective as an author and a teacher who teaches an atoms-first 
class, however, the atoms-first movement is more than just a reordering of topics. 
To me, the atoms-first movement is a result of the growing emphasis in chemistry 
courses on the two main ideas of chemistry: (1) that matter is particulate and (2) 
that the structure of the particles that compose matter determines its properties. 
In other words, the atoms-first movement is—at its core—an attempt to tell the 
story of chemistry in a more unified and thematic way. As a result, an atoms-first 

textbook must be more than a rearrangement of topics: it must tell the story of chemistry through the lens 
of the particulate model of matter. That is the goal I attempted to accomplish with Chemistry: Structure and 
Properties. Thanks to all of you who made the first edition the best-selling atoms-first book on the market. 
With this, the third edition, I continue to refine and improve on the approach taken in the first edition. My 
continuing hope is that students will recognize the power and beauty of the simple ideas that lie at the core of 
chemistry and that they will learn to apply them to see and understand the world around them in new ways.

Why Structure and Properties?
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“The eternal mystery of the 
world is its comprehensibility.”

—Albert Einstein (1879–1955)

The $125 million Mars Climate Orbiter was lost in the Martian atmosphere in 1999 because of a unit mix-up.
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QUANTIFICATION IS THE ASSIGNMENT of a number to some 

property of a substance or thing. For example, when we say that a 

pencil is 16 cm long, we assign a number to its length—we quantify 

how long it is. Quantification is among the most powerful tools in science. 

It requires the use of units, agreed-upon quantities by which properties are 

quantified. We used the unit centimeter in quantifying the length of the pencil. 

People all over the world agree about the length of a centimeter; therefore, we 

can use that standard to specify the length of any object. In this chapter, we 

look closely at quantification and problem solving. Science would be much less 

powerful without these tools.

E.1  The Metric Mix-up: A $125 Million 
Unit Error

On December 11, 1998, NASA launched the Mars Climate Orbiter, which was to become 
the first weather satellite for a planet other than Earth. The Orbiter’s mission was to mon-
itor the Martian atmosphere and to serve as a communications relay for the Mars Polar 
Lander, a probe that was to follow the Orbiter and land on the planet’s surface three 
weeks later. Unfortunately, the mission ended in disaster. A unit mix-up caused the 
Orbiter to enter the Martian atmosphere at an altitude that was too low. Instead of set-
tling into a stable orbit, the Orbiter likely disintegrated. The cost of the failed mission 
was estimated at $125 million.

There were hints of trouble several times during the Orbiter’s nine-month cruise 
from Earth to Mars. Several adjustments made to its trajectory seemed to alter the course 
of the Orbiter less than expected. As the Orbiter neared the planet on September 8, 1999, 
discrepancies emerged about its trajectory. Some of the data indicated that the satellite 
was approaching Mars on a path that would place it too low in the Martian atmosphere. 
On September 15, engineers made the final adjustments that were supposed to put the 
Orbiter 226 km above the planet’s surface. About a week later, as the Orbiter entered the 
atmosphere, communications were lost. The Orbiter had disappeared.

Later investigations showed that the Orbiter had come within 57 km of the planet sur-
face (Figure E.1 ▶, on the next page), an altitude that was too low. If a spacecraft enters a 
planet’s atmosphere too close to the planet’s surface, friction can cause the spacecraft to burn 
up. The on-board computers that controlled the trajectory corrections were programmed in 
metric units newton second ,i( )  but the ground engineers entered the trajectory corrections 
in English units pound second .i( )  The English and the metric units are not equivalent 

i i( )=1 pound second 4.45 newton second . The corrections that the ground engineers 
entered were 4.45 times too small and did not alter the trajectory enough to keep the Orbiter 
at a sufficiently high altitude. In chemistry as in space exploration, units are critical. If we get 
them wrong, the consequences can be disastrous.

Essentials: Units, Measurement, 
and Problem Solving

CHAPTER 

E 
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▶ FIGURE E.1 The Metric Mix-up The 
top trajectory represents the expected 
Mars Climate Orbiter trajectory; the 
bottom trajectory represents the 
actual one.

Trajectory
correction here

226 km

57 km

Actual trajectory

Estimated trajectory

The velocity of light in a vacuum is 
×3.00 10  m s.8

Scientific notation is reviewed in 
Appendix IA.

E.2  The Units of Measurement
The two most common unit systems are the metric system, used in most of the world, and the English 
system, used in the United States. Scientists use the International System of Units (SI), which is based 
on the metric system.

The Standard Units
Table E.1 shows the standard SI base units. For now, we focus on the first four of these units: the meter, 
the standard unit of length; the kilogram, the standard unit of mass; the second, the standard unit of time; 
and the kelvin, the standard unit of temperature.

The abbreviation SI comes from the 
French, Système International d’Unités.

Quantity Unit Symbol

Length Meter m

Mass Kilogram kg

Time Second s

Temperature Kelvin K

Amount of substance Mole mol

Electric current Ampere A

Luminous intensity Candela cd

TABLE E.1  SI Base Units

The Meter: A Measure of Length
A meter (m) is slightly longer than a yard (1 yard is 36 inches while 1 meter is 39.37 inches). Thus, a 
100-yard football field measures only 91.4 meters. The meter was originally defined as 1 10,000,000  of 
the distance from the equator to the North Pole (through Paris). The International Bureau of Weights and 
Measures now defines it more precisely as the distance light travels through a vacuum in a designated 
period of time, 1 299,792,458 second. Scientists commonly deal with a wide range of lengths and 
distances. The separation between the sun and the closest star (Proxima Centauri) is about ×3.8 10  m,16  
while many chemical bonds measure about × −1.5 10  m.10

KEY CONCEPT VIDEO E.2
Units and Significant Figures

WATCH NOW!

The Pearson+ icon indicates that 
this feature is embedded and 

interactive in the eTextbook.
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The Kilogram: A Measure of Mass
The kilogram (kg) was long defined as the mass of a metal cylinder kept at the International Bureau of 
Weights and Measures at Sèvres, France. However, its definition was recently changed to be based on a 
physical constant called Planck’s constant, which is known to a high level of precision. The kilogram is a 
measure of mass, a quantity different from weight. The mass of an object is a measure of the quantity of matter 
within it, while the weight of an object is a measure of the gravitational pull on its matter. If you could weigh 
yourself on the moon, for example, its weaker gravity would pull on you with less force than does Earth’s 
gravity, resulting in a lower weight. A 130-pound (lb) person on Earth would weigh only 21.5 lb on the moon. 
However, the person’s mass—the quantity of matter in their body—remains the same on every planet. One 
kilogram of mass is the equivalent of 2.205 lb of weight on Earth, so if we express mass in kilograms, a 130-lb 
person has a mass of approximately 59 kg, and this book has a mass of about 2.5 kg. Another common unit of 
mass is the gram (g). One gram is 1 1000 kg. A nickel (5¢) has a mass of about 5 g.

The Second: A Measure of Time
If you live in the United States, the second (s) is perhaps the most familiar SI unit. The International 
Bureau of Weights and Measures originally defined the second in terms of the day and the year, but a 
second is now defined more precisely as the duration of 9,192,631,770 periods of the radiation emitted 
from a certain transition in a cesium-133 atom. (We discuss transitions and the emission of radiation by 
atoms in Chapter 2.) Scientists measure time on a large range of scales. The human heart beats about 
once every second; the age of the universe is estimated to be about ×4.32 10  s17  (13.7 billion years); and 
some molecular bonds break or form in time periods as short as × −1 10  s.15

The Kelvin: A Measure of Temperature
The kelvin (K) is the SI unit of temperature. The temperature of a sample of matter is a measure of the 
amount of average kinetic energy—the energy due to motion—of the atoms or molecules that compose 
the matter. The molecules in a hot glass of water are, on average, moving faster than the molecules in a 
cold glass of water. Temperature is a measure of this molecular motion.

Temperature also determines the direction of thermal energy transfer, or what we commonly call 
heat. Thermal energy transfers from hot objects to cold ones. For example, when you touch another 
person’s warm hand (and yours is cold), thermal energy flows from that 
person’s hand to yours, making your hand feel warmer. However, if you 
touch an ice cube, thermal energy flows out of your hand to the ice, 
cooling your hand (and possibly melting some of the ice cube).

Figure E.2 ▶ shows the three temperature scales. The most common 
in the United States is the Fahrenheit scale F( )° , shown on the left. On 
the Fahrenheit scale, water freezes at °32  F and boils at °212  F at sea level. 
Room temperature is approximately °72  F. The Fahrenheit scale was orig-
inally determined by assigning °0  F to the freezing point of a concen-
trated saltwater solution and °96  F to normal body temperature. Normal 
body temperature was later measured more accurately to be °98.6  F.

Scientists and citizens of most countries other than the United 
States typically use the Celsius C( )°  scale, shown in the middle of 
Figure E.2. On this scale, pure water freezes at °0  C and boils at °100  C 
(at sea level). Room temperature is approximately °22  C. The 
Fahrenheit scale and the Celsius scale differ both in the size of their 
respective degrees and the temperature each designates as “zero.” Both 
the Fahrenheit and Celsius scales allow for negative temperatures.

▲ A nickel (5 cents) weighs about 
5 grams.

▶ FIGURE E.2 Comparison of the Fahrenheit, Celsius, and Kelvin 
Temperature Scales The Fahrenheit degree is five-ninths the size of 
the Celsius degree and the kelvin. The zero point of the Kelvin scale is 
absolute zero (the lowest possible temperature), whereas the zero 
point of the Celsius scale is the freezing point of water.

-459 °F -273 °C 0 K Absolute zero

32 °F 0.00 °C Water freezes

212 °F

180
Fahrenheit
degrees

100
Celsius
degrees

100
kelvins

100 °C 373 K

273 K

Water boils

Temperature Scales

Fahrenheit Celsius Kelvin
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The Celsius Temperature Scale

0 °C – Water freezes 10 °C – Brisk fall day 22 °C – Room temperature 45 °C – Summer day in Death Valley

The SI unit for temperature, as we have seen, is the kelvin, shown on the right in Figure E.2. The 
Kelvin scale (sometimes also called the absolute scale) avoids negative temperatures by assigning 0 K to 
the coldest temperature possible, absolute zero. Absolute zero (− °273  C or − °459  F) is the temperature 
at which molecular motion virtually stops. Lower temperatures do not exist. The size of the kelvin is 
identical to that of the Celsius degree; the only difference is the temperature that each designates as zero. 
You can convert between the temperature scales with these formulas:

( )° = ° −

= ° +

C F 32
1.8

K C 273.15

Note that we refer to Kelvin temperatures in 
kelvins (not “degrees Kelvin”) or K (not K° ).

Temperature Scales
Which temperature scale has no negative temperatures?

(a) Kelvin (b) Celsius (c) Fahrenheit

Note: Answers to Conceptual Connections can be found at the end of each chapter.

ANSWER NOW!
E.1

Cc 
Conceptual
Connection 

EXAMPLE E.1   Converting between Temperature Scales

A sick child has a temperature of 40.00  C.°  What is the child’s temperature in (a) K and (b) F?°

SOLUTION

(a) Begin by finding the equation that relates the 
quantity that is given C( )°  and the quantity 
you are trying to find (K).

 Since this equation gives the temperature in K 
directly, substitute in the correct value for the 
temperature in C°  and calculate the answer.

K C 273.15= ° +
K C 273.15
K 40.00 273.15 313.15 K

= ° +
= + =

(b) To convert from C°  to F,°  find the equation 
that relates these two quantities.

 Since this equation expresses C°  in terms of 
F,°  solve the equation for F.°

 Now substitute C°  into the equation and  
calculate the answer.

 Note: The number of digits reported in this 
answer follows significant figure conventions, 
covered later in this section.

C F 32
1.8

( )° = ° −

C F 32
1.8

1.8 C F 32

( )

( ) ( )

° = ° −

° = ° −

F 1.8 C 32

F 1.8 C 32

F 1.8 40.00  C 32 104.00  F

( )

( )

( )

° = ° +

° = ° +

° = ° + = °
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Prefix Multipliers
Scientific notation (see Appendix IA) allows us to express very large or very small quantities in a compact 
manner by using exponents. For example, we write the diameter of a hydrogen atom as × −1.06 10  m.10  
The International System of Units uses the prefix multipliers shown in Table E.2 with the standard units. 
These multipliers change the value of the unit by powers of 10 (just like an exponent does in scientific nota-
tion). For example, the kilometer has the prefix “kilo,” meaning 1000 or 10 .3  Therefore,

1 kilometer 1000 meters 10  meters3= =

Prefix Symbol Multiplier

exa E 1,000,000,000,000,000,000 1018( )

peta P 1,000,000,000,000,000 1015( )

tera T 1,000,000,000,000 1012( )

giga G 1,000,000,000 109( )

mega M 1,000,000 106( )

kilo k 1000 10 3( )

deci d 0.1 10 1( )−

centi c 0.01 10 2( )−

milli m 0.001 10 3( )−

micro µ 0.000001 10 6( )−

nano n 0.000000001 10 9( )−

pico p 0.000000000001 10 12( )−

femto f 0.000000000000001 10 15( )−

atto a 0.000000000000000001 10 18( )−

TABLE E.2  SI Prefix Multipliers

Similarly, the millimeter has the prefix “milli,” meaning 0.001 or −10 .3

1 millimeter 0.001 meters 10  meters3= = −

When we report a measurement, we choose a prefix multiplier close to the size of the quantity we are 
measuring. For example, to state the diameter of a hydrogen atom, which is × −1.06 10  m,10  we use 
picometers (106 pm) or nanometers (0.106 nm) rather than micrometers or millimeters. We choose the 
prefix multiplier that is most convenient for a particular number.

FOR PRACTICE E.1

Gallium is a solid metal at room temperature but will melt to a liquid in your hand. The melting 
point of gallium is 85.6  F.°  What is this temperature on (a) the Celsius scale and (b) the Kelvin scale?

Answers to For Practice and For More Practice problems are in Appendix IV.

Prefix Multipliers
What prefix multiplier is most appropriate for reporting a measurement of × −5.57 10  m?5

(a) mega (b) milli (c) micro (d) kilo

E.2

Cc 
Conceptual
Connection 

ANSWER NOW!
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Units of Volume
Many scientific measurements require combinations of units. For example, velocities are often reported 
in units such as km s, and densities are often reported in units of g cm .3  Both of these units are derived 
units, combinations of other units. An important SI-derived unit for chemistry is the m ,3  used to report 
measurements of volume.

Volume is a measure of space. Any unit of length, when cubed (raised to the third power), becomes 
a unit of volume. The cubic meter ( )m ,3  cubic centimeter ( )cm ,3  and cubic millimeter ( )mm 3  are all 
units of volume. The cubic nature of volume is not always intuitive, and studies have shown that our 
brains are not naturally wired to think abstractly, which we need to do in order to think about volume. 
For example, consider this question: How many small cubes measuring 1 cm on each side are required to 
construct a large cube measuring 10 cm (or 1 dm) on a side?

The answer to this question, as we can see by carefully examining the unit cube in Figure E.3 ◂, is 
1000 small cubes. When we go from a linear, one-dimensional distance to a three-dimensional volume, 
we must raise both the linear dimension and its unit to the third power (not just multiply by 3). The vol-
ume of a cube is equal to the length of its edge cubed:

volume of cube edge length 3( )=

A cube with a 10-cm edge length has a volume of ( )10 cm 3 or 1000 cm ,3  and a cube with a 100-cm edge 
length has a volume of ( ) =100 cm 1,000,000 cm .3 3  Other common units of volume in chemistry are 
the liter (L) and the milliliter (mL). One milliliter ( )−10  L3  is equal to 1 cm .3  A gallon of gasoline con-
tains 3.785 L. Table E.3 lists some common units—for volume and other quantities—and their 
equivalents.

▲ FIGURE E.3 The Relationship 
between Length and Volume

10 cm

1 cm

Relationship between
Length and Volume

A 10-cm cube contains
1000 1-cm cubes.

Length Mass Volume

1 kilometer  km 0.6214 mile  mi( ) ( )= 1 kilogram  kg 2.205 pounds  lb( ) ( )= 1 liter  L 1000 mL 1000 cm3( ) = =

1 meter  m 39.37 inches  in 1.094 yards  yd( ) ( ) ( )= = 1 pound  lb 453.59 grams  g( ) ( )= 1 liter  L 1.057 quarts  qt( ) ( )=

1 foot  ft 30.48 centimeters  cm exact( ) ( ) ( )= 1 ounce  oz 28.35 grams  g( ) ( )= 1 U.S. gallon  gal 3.785 liters  L( ) ( )=

1 inch  in 2.54 centimeters  cm exact( ) ( )( )=

TABLE E.3  Some Common Units and Their Equivalents

E.3  The Reliability of a Measurement
The reliability of a measurement depends on the instrument used to make the measurement. For exam-
ple, a bathroom scale can reliably differentiate between 65 lb and 75 lb but probably can’t differentiate 
between 1.65 and 1.75 lb. A more precise scale, such as the one a butcher uses to weigh meat, can differ-
entiate between 1.65 and 1.75 lb. The butcher shop scale is more precise than the bathroom scale. We 
must consider the reliability of measurements when reporting and manipulating them.

Reporting Measurements to Reflect Certainty
Scientists normally report measured quantities so that the number of reported digits reflects the cer-
tainty in the measurement: more digits, more certainty; fewer digits, less certainty.

For example, cosmologists report the age of the universe as 13.7 billion years. Measured values 
like this are usually written so that the uncertainty is in the last reported digit. (We assume the uncer-
tainty to be ±1 in the last digit unless otherwise indicated.) By reporting the age of the universe as 
13.7 billion years, cosmologists mean that the uncertainty in the measurement is ±0.1 billion years (or 
±100 million years). If the measurement was less certain, then the age would be reported differently. 
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For example, reporting the age as 14 billion years would indicate that the uncertainty is ±1 billion 
years. In general,

Scientific measurements are reported so that every digit is certain except the last, which is 
estimated.

Consider the following reported number:

5.213

certain estimated

▲ FIGURE E.4 Precision in 
Weighing. (a) This balance is precise to 
the tenths place. (b) This balance is 
precise to the ten-thousandths place.

Estimation in Weighing

(a)

(b)

Report as 10.5 g

Report as 10.4977 g

The first three digits are certain; the last digit is estimated.
The number of digits reported in a measurement depends on the measuring device. Consider 

weighing a sample on two different balances (Figure E.4 ▶). These two balances have different levels of 
precision. The balance shown on top is accurate to the tenths place, so the uncertainty is ±0.1 and the 
measurement should be reported as 10.5 g. The bottom balance is more precise, measuring to the ten-
thousandths place, so the uncertainty is ±0.0001 and the measurement should be reported as 10.4977 g. 
Many measuring instruments—such as laboratory glassware—are not digital. The measurement on 
these kinds of instruments must also be reported to reflect the instrument’s precision. The usual 
procedure is to divide the space between the finest markings into ten and make that estimation the last 
digit reported. Example E.2 demonstrates this procedure.

EXAMPLE E.2   Reporting the Correct Number of Digits

Meniscus

SOLUTION

Since the bottom of the meniscus is between the 4.5 and 4.6 mL markings, mentally divide the 
space between the markings into 10 equal spaces and estimate the next digit. In this case, the 
result is 4.57 mL.

What if you estimated a little differently and wrote 4.56 mL? In general, a one-unit difference 
in the last digit is acceptable because the last digit is estimated and different people might estimate 
it slightly differently. However, if you wrote 4.63 mL, you would have misreported the 
measurement.

FOR PRACTICE E.2

Record the temperature on this thermometer to the correct number of digits.

WATCH NOW!
INTERACTIVE WORKED EXAMPLE 
VIDEO E.2

The graduated cylinder shown here has markings every 
0.1 mL. Report the volume (which is read at the bottom 
of the meniscus) to the correct number of digits. (Note: 
The meniscus is the crescent-shaped surface at the top 
of a column of liquid.)




